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THE FINAL EXAM

Due at 3 PM, December 9th

Guidelines:

• There are two problems in this exam. You are required to work on both
problems.

• The only reference you are allowed to use is the textbook. You must
work on the exam by yourself. No discussion is allowed with any other
person.

• No computer software or calculator is allowed. The only ”tool” allowed
is pen and paper.

• You are required to derive every equation you write down, except for
those derived in the textbook. If you make use of an equation in the
textbook, you must cite the original equation in the textbook explicitly.
Failure to give the original reference will result in partial or no credit at
all.

• It is important for you to clearly state the logic of your answers. I will
not make any attempt to ”guess” your results. If I cannot follow what
you write, I cannot give you the credit.

• Please return your answers to Grant Darktower in the departmental
office by the deadline. Or, if you wish, email an electronic version of
your answers to me by the deadline.
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Problem 1: Non-relativistic Quantum Field Theory
Consider the following Lagrangian with a complex scalar field ψ(x):

L0 = iψ∗∂tψ + α∇ψ∗ · ∇ψ

where α is a real number.
(a) Even though the Lagrangian is not real, show the action S =

∫
d4xL0 is.

In other words, show that S = S∗. Then derive the Euler-Lagrange equations
and solve for the plane-wave solutions, for which ψ = e−i(ωt−~k·~x). What is the
relation between ω and k ≡ |~k|?
(b) The Lagrangian L0 is not Lorentz invariant. However, it does preserve
space-time translations as well as an internal U(1) symmetry. Derive the
Noether currents corresponding to the above symmetries. Find the conserved
charges associated with the space-time translations and the U(1) symmetry.
Express both the current and the charge in terms of the field and its deriva-
tives.
(c) Argue that α must have the dimension of 1/mass. So let’s choose a
normalization such that α = ±1/(2m). Fix the sign of α and explain your
reason. Can you literally identify m with the mass?
(d) Canonically quantize the theory by writing down the commutation rela-
tions satisfied by ψ and ψ∗, as well as their conjugate momenta. Expand the
fields in terms of the plane-wave solution in (a) and identify properly nor-
malized coefficients in the expansion with the creation and/or annihilation
operators. Furthermore, write the energy, the linear momentum, and the
U(1) charge in terms of the creation/annihilation operators. (Normal-order
if need to.)
(e) Find the equation of motion for the two-particle state |k1, k2〉 in the
Schroedinger picture. Can you recognize this equation? What is the physical
meaning of the U(1) charge? Can you have particle creation and annihilation
in this theory?
(f) Now add a Coulomb interaction among the ψ particles (as is often the
case for charged particles in condensed matter systerm):

L0 −
∫
d3y ψ(~y, t)ψ∗(~y, t)

e2

|~x− ~y|
ψ(~x, t)ψ∗(~x, t)

Compute the scattering amplitude of ψ(~k1)+ψ(~k2) → ψ(~p1)+ψ(~p2) to leading
order. Is the interaction attractive or repulsive for this particular process?
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Problem 2: Neutral Current Interactions at an e+e− Collider
In Quantum Electrodynamics the process of electron-positron annihilating
into muon pair, mediated by the photon, is the simplest of all QED process
and computed in great detail in Peskin and Schroeder. In the early ’80s
particle physicists discovered a new contribution, in addition to photon, to
this process due to the existence of a neutral massive spin-1 particle called
the Z boson, which interacts with the electrons and the muons through the
following Lagrangian:

LZ = − 1√
2

(
GFm

2
Z√

2

) 1
2 [
gR ψ̄γ

µ(1 + γ5)ψZµ + gL ψ̄γ
µ(1− γ5)ψZµ

]
,

where ψ = e− or µ−. In the above mZ = 91 GeV is the mass of the Z and
GF = 1.66× 105 GeV−2 is the Fermi coupling constant. There are now two
Feynman diagrams contributing to the annihilation process e−(k1)+e

+(k2) →
µ−(p1) + µ+(p2), as shown in Fig. 1.
(a) Use the following propagator for the Z boson:

−i(gµν − kµkν/m
2
Z)

k2 −m2
Z + iε

to compute the spin-averaged differential cross-section dσ/dz in the centre-
of-mass frame where z ≡ cos θ = ~k1 ·~p1/|~k1||~p1|. Express your answer in terms
of z and the Mandelstam variable s = (k1 + k2)

2. Also treat the electron and
muon as massless since s >> m2

e,m
2
µ for practical purposes.

FIG. 1: Feynman diagrams for e+e− → µ+µ−.
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(b) There should be three contributions to dσ/dz: the electromagnetic con-
tribution from the photon γ, the γ−Z0 interference, and the effect from the
Z0 diagram alone. At energies much below the Z boson mass, s << m2

Z ,
determine and justify which one of the three contributions can be neglected.
An experimental quantity which allows physicists to observe the effect of the
neutral Z boson is the forward-backward asymmetry:

A ≡
∫ 1

0 dz
dσ
dz −

∫ 0
−1 dz

dσ
dz∫ 1

−1 dz
dσ
dz

.

In the limit s << m2
Z , compute A to leading order in s.

(c) Such an asymmetry was indeed measured to be −8.1 ± 2.1% by the
MARK-J experiment at DESY in Hamburg, whose centre-of-mass energy is
roughly s ≈ 1400 GeV2. Using gR − gL = 1, which is true in the standard
model of particle physics, and the fine-structure constant α ≈ 1/137, estimate
the amount of asymmetry predicted by our theory and compare it with the
experiment. How many standard deviation away is your prediction from the
measured value?
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